skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Calixto, Eduardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In plants, chemical and mechanical traits are involved in the defense against environmental stressors. In the case of Mimosa plants, touch-sensitive responses through leaf-closure provide a unique form of mechanical defense. While past research has shown that the impacts of stressors such as competition or short-term drought may cause the chemical defenses in plants to increase or decrease, it is unknown how the interaction of these stressors may influence the efficiency of touch-sensitive responses. In this study, we hypothesized that the touch-sensitive responses of Mimosa strigillosa would strongly differ from regularly watered individuals when subjected to short-term drought. Additionally, we hypothesized that competition would hinder the touch-sensitive response, particularly from competitors in closely related taxa. To test these hypotheses, an experimental design was performed with three competition groups of Mimosa. In each competition group, half of the individuals were subjected to drought conditions. Plants were then subjected to a tactile stimulus in a greenhouse environment, with the degree of leaf closure being measured as an estimate of recovery. Drought was found to be a significant factor of both the rate of change of leaf closure, and the degree of leaf closure. 
    more » « less
  2. Abstract Herbivores often have highly variable impacts on plant fecundity. The relative contribution of different environmental factors operating at varying spatial scales in affecting this variability is often unclear. We examined how density‐dependent seed predation at local scales and regional differences in primary productivity are associated with variation in the magnitude of pre‐dispersal seed predation onMonarda fistulosa(Lamiaceae). WithinM. fistulosapopulations growing in a low‐productivity region (LPR), Montana, USA, and a high‐productivity region (HPR), Wisconsin, USA, we quantified the magnitude of pre‐dispersal seed predation among individual plants differing in seed head densities. Out of a total of 303M. fistulosaplants that were surveyed, we found half as many herbivores in seed heads in the LPR (n = 133 herbivores) compared to the HPR (n = 316). In the LPR, 30% of the seed heads were damaged in plants with low seed head density, while 61% of seed heads were damaged in plants with high seed head density. Seed head damage was consistently high in the HPR (about 49% across the range of seed head density) compared to the LPR (45% across a range of seed head density). However, the proportion of seeds per seed head that were destroyed by herbivores was nearly two times higher (~38% loss) in the LPR compared to HPR (22% loss). Considering the combined effects of probability of damage and seed loss per seed head, the proportion seed loss per plant was consistently higher in the HPR regardless of seed head density. Nevertheless, because of greater seed head production, the total number of viable seeds produced per plant was higher in HPR and high‐density plants, despite being exposed to greater herbivore pressure. These findings show how large‐scale factors can interact with local‐scale factors to influence how strongly herbivores suppress plant fecundity. 
    more » « less